Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui.

نویسندگان

  • Sankar Chatterjee
  • R Jack Templin
چکیده

Microraptor gui, a four-winged dromaeosaur from the Early Cretaceous of China, provides strong evidence for an arboreal-gliding origin of avian flight. It possessed asymmetric flight feathers not only on the manus but also on the pes. A previously published reconstruction shows that the hindwing of Microraptor supported by a laterally extended leg would have formed a second pair of wings in tetrapteryx fashion. However, this wing design conflicts with known theropod limb joints that entail a parasagittal posture of the hindlimb. Here, we offer an alternative planform of the hindwing of Microraptor that is concordant with its feather orientation for producing lift and normal theropod hindlimb posture. In this reconstruction, the wings of Microraptor could have resembled a staggered biplane configuration during flight, where the forewing formed the dorsal wing and the metatarsal wing formed the ventral one. The contour feathers on the tibia were positioned posteriorly, oriented in a vertical plane for streamlining that would reduce the drag considerably. Leg feathers are present in many fossil dromaeosaurs, early birds, and living raptors, and they play an important role in flight during catching and carrying prey. A computer simulation of the flight performance of Microraptor suggests that its biplane wings were adapted for undulatory "phugoid" gliding between trees, where the horizontal feathered tail offered additional lift and stability and controlled pitch. Like the Wright 1903 Flyer, Microraptor, a gliding relative of early birds, took to the air with two sets of wings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerodynamic Characteristics of a Feathered Dinosaur Measured Using Physical Models. Effects of Form on Static Stability and Control Effectiveness

We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, [Formula: see text]Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability chara...

متن کامل

The Extent of the Preserved Feathers on the Four-Winged Dinosaur Microraptor gui under Ultraviolet Light

BACKGROUND The holotype of the theropod non-avian dinosaur Microraptor gui from the Early Cretaceous of China shows extensive preservation of feathers in a halo around the body and with flight feathers associated with both the fore and hindlimbs. It has been questioned as to whether or not the feathers did extend into the halo to reach the body, or had disassociated and moved before preservatio...

متن کامل

Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds.

Preserved indicators of diet are extremely rare in the fossil record; even more so is unequivocal direct evidence for predator-prey relationships. Here, we report on a unique specimen of the small nonavian theropod Microraptor gui from the Early Cretaceous Jehol biota, China, which has the remains of an adult enantiornithine bird preserved in its abdomen, most likely not scavenged, but captured...

متن کامل

Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.

The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather's aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeo...

متن کامل

Primitive Wing Feather Arrangement in Archaeopteryx lithographica and Anchiornis huxleyi

In modern birds (Neornithes), the wing is composed of a layer of long, asymmetrical flight feathers overlain by short covert feathers. It has generally been assumed that wing feathers in the Jurassic bird Archaeopteryx and Cretaceous feathered dinosaurs had the same arrangement. Here, we redescribe the wings of the archaic bird Archaeopteryx lithographica and the dinosaur Anchiornis huxleyi and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 5  شماره 

صفحات  -

تاریخ انتشار 2007